This is a standalone specification intended for payload designers. Planetary Systems Corporation does not design or manufacture payloads.

1. FEATURES AND BENEFITS

- **Preloaded Payload Tabs** create a modelable load path to the payload so strength at critical locations like reaction wheel bearings can be accurately calculated. Preload means the payload can’t jiggle and damage itself.
- **Separation Electrical Connector** allows communication and charging between payload and launch vehicle prior to and during launch. It also grounds the payload to the CSD.
- **Dispenser Constrained Deployables** greatly reduce the costs and complexity of payload deployables like solar panels and antennas.
- **Largest Volume** versus existing designs accommodates larger payloads. Payloads have 15% more volume and can be 1 inch longer than standard CubeSats.
- **Unrestricted External Shape** eliminates need for four corner rails.
- **Safe/Arm Access on Front** ensures payload access at all times via CSD door.
- **Flight Validated** in 2013.
- **Fully Documented** mechanical and electrical interfaces and CAD models available on request allowing rapid and low cost design.
- **Parametric Design** commonality allows users easy understanding of electro-mechanical interface for 3U, 6U, 12U and 27U sizes.
- **Cross Compatible** with existing CubeSat standards via tab attachment.

2. DESCRIPTION

These payloads are fully contained within a Canisterized Satellite Dispenser (CSD, canister or dispenser) during launch. A CSD encapsulates the payload during launch and dispenses it on orbit. CSDs reduce risk to the primary payload and therefore maximize potential launch opportunity. They also ease restrictions on payload materials and components. This specification currently encompasses four payload sizes, 3U, 6U, 12U and 27U.

The payloads incorporate two tabs running the length of the ejection axis. The CSD will grip these tabs, providing a secure, modelable, preloaded junction. This is essential to accurately predict loads on critical components and instrumentation and prevent jiggling.

The payload may use the CSD to restrain deployables. The allowable contact zones are defined.

A payload can be built to this specification without knowledge of the specific dispenser within it will fly. Similarly, dispenser manufacturers will be ensured of compatibility with payloads that conform to this specification.

![Figure 2-1: Payload deploying from CSD](image)

![Figure 2-2: Payload sizes](image)

CONTENTS

1. Features and Benefits ... 1
2. Description .. 1
3. Parameters ... 1
4. Common Requirements .. 3
5. Electrical Schematic .. 4
6. Dimensions... 4
7. Tab Gaps... 7
8. Discrete Payloads ... 7
9. Benefit of Tabs .. 8
10. Predicting Design Limit Loads 9
11. Tab Manufacturing .. 11
12. CSD Constrained Deployables 15
13. Payload Volume .. 16
14. Typical Applications.. 17
15. Separation Electrical Connector Attachment 22
16. Recommended Test and Integration 22
17. Tips and Considerations .. 22
18. CAD Models .. 22
19. Additional Information .. 22
20. References .. 23
21. Acknowledgements ... 23
22. Revision History .. 23
3. Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Unit</th>
<th>3U Min</th>
<th>3U Max</th>
<th>6U Min</th>
<th>6U Max</th>
<th>12U Min</th>
<th>12U Max</th>
<th>27U Min</th>
<th>27U Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (1)</td>
<td>Mass</td>
<td>At launch</td>
<td>kg</td>
<td>6.0</td>
<td>12.0</td>
<td>24.0</td>
<td>40.0</td>
<td>60.0</td>
<td>54.0</td>
<td>119.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[lb]</td>
<td>[13.2]</td>
<td>[26.5]</td>
<td>[52.9]</td>
<td>[115.8]</td>
<td>[228.6]</td>
<td>[326.0]</td>
<td>[326.0]</td>
<td>[360.0]</td>
</tr>
<tr>
<td>CMx</td>
<td>Center of mass, X</td>
<td>Stowed in CSD</td>
<td>mm</td>
<td>-20</td>
<td>20</td>
<td>-40</td>
<td>40</td>
<td>-60</td>
<td>60</td>
<td>2.36</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[-.79]</td>
<td>[.79]</td>
<td>[-1.57]</td>
<td>[1.57]</td>
<td>[-2.36]</td>
<td>[2.36]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMy</td>
<td>Center of mass, Y</td>
<td>Stowed in CSD</td>
<td>mm</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>70</td>
<td>55</td>
<td>125</td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[.39]</td>
<td>[2.76]</td>
<td>[.39]</td>
<td>[2.76]</td>
<td>[2.17]</td>
<td>[4.92]</td>
<td>[3.94]</td>
<td>[7.09]</td>
</tr>
<tr>
<td>CMz</td>
<td>Center of mass, Z</td>
<td>Stowed in CSD</td>
<td>mm</td>
<td>133</td>
<td>233</td>
<td>133</td>
<td>233</td>
<td>133</td>
<td>233</td>
<td>133</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[5.24]</td>
<td>[9.17]</td>
<td>[5.24]</td>
<td>[9.17]</td>
<td>[5.24]</td>
<td>[9.17]</td>
<td>[5.24]</td>
<td>[9.17]</td>
</tr>
<tr>
<td>Height</td>
<td>Maximum payload depth, +Y dimension</td>
<td></td>
<td>mm</td>
<td>109.70</td>
<td>119.70</td>
<td>119.70</td>
<td>119.70</td>
<td>176.25</td>
<td>332.80</td>
<td>8772</td>
<td>6939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[4.319]</td>
<td>[4.713]</td>
<td>[4.713]</td>
<td>[4.713]</td>
<td>[7.09]</td>
<td>[13.102]</td>
<td>[3.94]</td>
<td>[6.399]</td>
</tr>
<tr>
<td>Width</td>
<td>Maximum payload width from origin, ±X dimension</td>
<td></td>
<td>mm</td>
<td>56.55</td>
<td>119.70</td>
<td>119.70</td>
<td>119.70</td>
<td>176.25</td>
<td>332.80</td>
<td>8772</td>
<td>6939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[2.226]</td>
<td>[4.713]</td>
<td>[4.713]</td>
<td>[4.713]</td>
<td>[7.09]</td>
<td>[13.102]</td>
<td>[3.94]</td>
<td>[6.399]</td>
</tr>
<tr>
<td>Tab Width</td>
<td>±X dimension</td>
<td></td>
<td>mm</td>
<td>112.7</td>
<td>131.3</td>
<td>239.0</td>
<td>239.1</td>
<td>352.1</td>
<td>358.1</td>
<td>13862</td>
<td>13878</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[4.437]</td>
<td>[5.174]</td>
<td>[9.425]</td>
<td>[9.425]</td>
<td>[13.862]</td>
<td>[13.878]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab Length</td>
<td>+Z dimension</td>
<td></td>
<td>mm</td>
<td>361</td>
<td>361</td>
<td>361</td>
<td>361</td>
<td>361</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>EPY</td>
<td>Ejection plate contact zone, +Y dimension from origin</td>
<td></td>
<td>mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>213</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[3.94]</td>
<td>[3.94]</td>
<td>[3.94]</td>
<td>[8.39]</td>
<td>[12.83]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC_X1</td>
<td>Deployable contact zone with CSD, ±X face near +Y face</td>
<td></td>
<td>mm</td>
<td>91.4</td>
<td>91.4</td>
<td>204.5</td>
<td>317.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[3.598]</td>
<td>[3.598]</td>
<td>[8.051]</td>
<td>[12.504]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC_X2</td>
<td>Deployable contact zone with CSD, ±X face near -Y face</td>
<td></td>
<td>mm</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[0.799]</td>
<td>[0.799]</td>
<td>[0.799]</td>
<td>[0.799]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC_+Y</td>
<td>Deployable contact zone with CSD, +Y face (2)</td>
<td></td>
<td>mm</td>
<td>43.85</td>
<td>107.0</td>
<td>107.0</td>
<td>163.5</td>
<td>163.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[1.726]</td>
<td>[4.213]</td>
<td>[4.213]</td>
<td>[6.439]</td>
<td>[6.439]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC_-Y</td>
<td>Deployable contact zone with CSD, -Y face (2)</td>
<td></td>
<td>mm</td>
<td>31.2</td>
<td>94.3</td>
<td>94.3</td>
<td>150.9</td>
<td>150.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[1.228]</td>
<td>[3.713]</td>
<td>[3.713]</td>
<td>[5.941]</td>
<td>[5.941]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fds</td>
<td>Force from optional deployment switches, summed, Z axis (3)</td>
<td>When contacting CSD ejection plate. Per CSD ejection spring.</td>
<td>N</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Db2</td>
<td>Payload separation from ejection plate necessary to change deployment switch state, Z axis</td>
<td>If switches reside on –Z face.</td>
<td>mm</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Ffd</td>
<td>Friction force deployables impart on CSD walls during ejection</td>
<td>summed (all 4 sides), per CSD ejection spring</td>
<td>N</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>TML</td>
<td>Total Mass Loss</td>
<td>Per ASTM E 595-77/84/90</td>
<td>%</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CVCM</td>
<td>Collected Volatile Condensable Material</td>
<td>Per ASTM E 595-77/84/90</td>
<td>%</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>DP</td>
<td>CSD de-pressurization rate</td>
<td>During launch</td>
<td>psil/s</td>
<td>40.67</td>
<td>41.17</td>
<td>103.84</td>
<td>103.74</td>
<td>103.84</td>
<td>103.74</td>
<td>160.38</td>
<td>160.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[in]</td>
<td>[1.601]</td>
<td>[1.621]</td>
<td>[4.088]</td>
<td>[4.088]</td>
<td>[4.088]</td>
<td>[4.088]</td>
<td>[6.314]</td>
<td>[6.334]</td>
</tr>
</tbody>
</table>

(1) The maximum mass is a guideline, not a requirement. The total dynamic response of the payload, not the overall mass, is the design driver and limitation for the accompanying dispenser. The dynamic response is a function of the payload’s stiffness, mass distribution, damping and external loading environment.

(2) Some contact zones are not present on the 3U. Refer to Figure 6-2 for locations.

(3) Ensures payload will not gap from CSD ejection plate prior to separating.
4. COMMON REQUIREMENTS

1. Tabs
 a. Tabs shall be aluminum alloy with yield strength ≥ 56ksi. 7075-T7351 is common but numerous other alloys also meet this strength requirement. See Metallic Materials Properties Development and Standardization (MMPDS, formerly MIL-HDBK-5) for details.
 b. Holes, countersinks, and any protruding features are prohibited anywhere along the Tabs.
 c. Tabs shall be Hard Anodized per MIL-A-8625, Type III, Class 1. All dimensions apply AFTER hard anodize. Note that anodize thickness refers to the total thickness. As a guideline, approximately half will penetrate and half will build-up (example .002 thickness = .001 penetration + .001 build-up).
 d. Max surface roughness is N7 (1.6 μm Ra, 63 μin AA).
 e. By default tabs shall run the entire length of the payload. However discontinuities or gaps are allowed per Section 7. When stowed in the CSD no portion of the payload may extend beyond the tabs in the +Z direction.

2. Dimensions and tolerances in Figure 6-2 shall be maintained under all temperatures. Consider deformation and warping if structure is not aluminum.

3. The structure comprising the –Z face (face that contacts CSD ejection plate) may be a uniform surface or consist of discrete contact points. The discrete contact points shall be located such that they envelope the payload’s C.M. and any deployment switches.

4. Contact the launch service provider to determine if payload inhibits (deployment switches) are required. If required, locating on the –Z face such that they contact the CSD’s ejection plate is recommended. The deployable contact areas may also be used but consider the effect of tolerance build-up in the dispenser. See Figure 6-2 and Section 12. Also consider using the optional Separation Electrical Connector (ref. 3) as a loopback.

5. Safe/Arm plug, if necessary, shall reside in specified zone on +Z (preferred), +X, or -X face.

6. Deployables shall be verified with the CSD prior to flight.

7. If electrical grounding to the CSD is desired, the Separation Electrical Connector (in-flight disconnect) must be used. See ref. 3.

8. The two tabs and the structure that contacts the CSD ejection plate on the –Z face are the only required features of the payload. The rest of the payload may be any shape that fits within the max dynamic envelope.

9. The maximum dimensions stated in this document are the payload’s dynamic envelope and shall include all load cases (vibration, thermal, acoustic, etc.).

10. No debris shall be generated that will inhibit separation.
5. ELECTRICAL SCHEMATIC

Figure 5-1: Electrical schematic

1) The metal shell conducts to the CSD via conductive surface treatments.
2) Required to assure electrical continuity between shells. Retained by Upper.
3) The metal shell conducts to the Payload via conductive surface treatments.
4) Optional connector is an in-flight disconnect. Produced by Planetary Systems Corp. See document 2001025 at www.planetarysys.com. Also useful to wire as a loopback in lieu of deployment switches.

6. DIMENSIONS

Figure 6-1: Payload features (6U shown)
PAYLOAD SPECIFICATION FOR 3U, 6U, 12U AND 27U

Figure 6-2: Payload dimensions

1) Height and Width dimensions are the maximum dynamic envelope. Payload may be any shape that fits within allowable volume.

2) CSD ejection plate contacts this face. Payload need only contact in at least three locations that surround CM and optional deployment switches. Each contact shall have a minimum area of 0.026 mm². Rest of Payload may be recessed. The circular areas correspond to holes in the CSD ejection plate (6U and 12U only). Be cognizant of this when locating switches.

3) Tolerance applies only to features contacting ejection plate, not the entire face.

4) Tabs shall be continuous between M&N. See Detail Tab.

5) Radius may wrap around edge. See Detail Tab.

6.38 [.25] Deployables shall not contact CSD here

This contact zone not present on 3U.
Figure 6-3: Location of optional separation electrical connector

For more information on the Separation Electrical Connector see PSC document 2001025 Separation Connector Data Sheet (ref. 3). Also see section Separation Electrical Connector Attachment.
7. TAB GAPS

A payload may have gaps in the tabs as defined in Figure 7-1. Break or fillet to remove all sharp edges at the gaps.

It is important to note that the allowable payload response will decrease as a percentage of the tab length removed. Reducing the payload mass or using an isolation system may be necessary depending on the severity of the launch environment. Consider this when electing to utilize gaps.

Figure 7-1: Tab gap requirements

8. DISCRETE PAYLOADS

Multi-piece payloads are allowed provided they meet the following requirements.

1) Total length of all pieces: must comply with ‘Tab Length’ in Section 3.
2) Minimum allowable tab length of a single piece: 50 mm [2.0 in].
3) Tab thickness of the extreme fore and aft pieces: equal to or greater than the adjoining piece.
4) All tab gaps shall comply with Section 7.

Figure 8-1: Multi-piece payload
9. BENEFIT OF TABS

Preloading the payload to the CSD by virtue of clamping the tabs creates a stiff invariant load path. This allows for accurate dynamic modeling to predict responses in anticipation of vibratory testing and space flight. Confidently predicting response is critical for aerospace structures and sensitive components. A payload that can move inside its dispenser is unmodelable and therefore the loading of sensitive components can not be predicted.

![Figure 9-1: Tabs vs. rails](image)

Payload may vibrate in canister because of small gap (~0.5 mm) between rails and CSD walls.

Tabs guarantee an invariant load path, allowing useful predictions of dynamic response.

First mode of payload is 1,155 Hz.

First mode of CSD and payload is 508 Hz.

![Figure 9-2: Prediction of 6U dynamic response](image)

![Figure 9-3: Prediction of 3U dynamic response](image)
10. PREDICTING DESIGN LIMIT LOADS

The maximum structural loading typically results from the dynamic response during random vibration testing and/or shock testing. These loads are dependent on the mass, stiffness, and damping properties unique to each payload. The method below provides a rudimentary means of predicting these loads.

1) Create a simplified model of the payload consisting of the primary structure and significant components for a Normal Modes Analysis from 20-2,000Hz.

2) Identify the dominant resonant frequencies and mode shapes for each orthogonal direction (X, Y, Z). These modes can be identified as having the highest percentage of Modal Effective Mass relative to all modes modeled within the frequency bandwidth stated above.

3) The response for a random vibration profile can be predicted by using the Miles Relation shown below:

\[g_{rms} = \sqrt{0.5 \times \pi \times f_n \times Q \times ASD} \]

- \(g_{rms} \) [g] = 1σ acceleration response
- \(f_n \) [Hz] = natural frequency (frequency of selected mode)
- \(Q \) [-] = \(\frac{1}{2 + \zeta} \) = quality factor (use 10 as an estimate if unsure)
- \(\zeta \) [-] = critical dampening
- ASD [g^2/Hz] = input acceleration spectral density at the desired frequency \(f_n \)

Assume the peak response is 3σ = 3\(g_{rms} \)
All payloads behave uniquely. The figure below shows two payload mockups of the same mass with very different responses. The mockup on the left has numerous discrete masses and bolted joints. There are many modes and the damping is typical of many payloads. The mockup on the right consists of a few very stiff aluminum plates. There is one very dominate mode over a wide frequency range and with great amplification that results in significant loading. While heavy and simpler structures are often easier to design and manufacture, they often do not create an optimal load environment for the payload’s components because they over simplify and under damp.

Figure 10-1: Comparison of payload responses

The response of the payload will significantly affect the loading on critical parts like reaction wheel bearings, complex mechanisms, electronic components and optics. Ensuring a consistent load path from the launch vehicle to the payload (i.e. preloading) is the only way to accurately predict the loading from thermal, vibration and shock.
11. TAB MANUFACTURING

Designing and manufacturing tabs that meet the requirements of this document are critical for successful integration and deployment of a payload. As the interface to the CSD, the tabs shall be designed, dimensioned, manufactured, and inspected with care.

Example Production Drawing

The figure below shows an example production drawing of a plate with tabs. Some of the tolerances are tighter than this specification requires, ensuring compliance after assembly of the entire payload structure.

Figure 11-1: An example tab plate production drawing
The tabs do not have to be on a discrete plate as shown above. They can be bolt-on features or machined into a more intricate structure. Individual bolt-on tabs are beneficial as they can be easily replaced if damaged or manufactured improperly.

Figure 11-2: Example bolt-on tab drawing
Inspection

Measure the tab thickness using a micrometer as follows. A digital caliper lacks the required accuracy.

1) Select a micrometer with an accuracy and resolution of .00005 inches (.001 mm).
2) Ensure micrometer surfaces and tabs are clean.
3) Use a gauge block to verify micrometer accuracy and operator technique.
4) Mark increments at every inch along tab length.
5) Take minimum three measurements at each location to ensure repeatability.
6) Record and plot measurements.
7) All measurements shall be within tolerance. The figure below shows an example of tabs that are NOT acceptable.

Also verify the following critical aspects of the tabs.

1) All Tab edge fillets are in tolerance. See Detail Tab in Figure 6-2.
2) Hard anodize is continuous along entire tab surface (top, bottom and sides). Location defined as between M-N in Detail Tab in Figure 6-2.

After the payload structure is assembled the tabs shall remain flat per Figure 6-2. Place the payload on a verified flat surface (granite surface plates are ideal). A .010 inch thick feeler (thickness) gauge or diameter .010 gauge pin (plug gauge) shall not fit under any portion of the tab. See Figure 11-5 and Figure 11-6.

![Figure 11-3: Measuring tab thickness with micrometer](image)

![Figure 11-4: Tab thickness measurement](image)

![Figure 11-5: Example of structure warping tabs](image)

![Figure 11-6: Verifying assembled flatness](image)
The following figure is a worksheet that should be used when inspecting Tabs. Fill in the worksheet and verify that the measured values meet all the requirements defined within this document. The flatness and perpendicularity measurements shall be taken after the entire payload structure is assembled. It is still prudent to ensure the entire payload complies with this specification in addition to the tabs. See Sections 3, 4 and 6 for requirements.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab material</td>
<td></td>
</tr>
<tr>
<td>Tab anodize type and class</td>
<td></td>
</tr>
<tr>
<td>Tab (datum A) flatness [mm or in]</td>
<td></td>
</tr>
<tr>
<td>-Z face perpendicularity to datum A [mm or in]</td>
<td></td>
</tr>
</tbody>
</table>

Width

<table>
<thead>
<tr>
<th>Location</th>
<th>Value [mm or in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back (near -Z side)</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td>Front (near +Z side)</td>
<td></td>
</tr>
</tbody>
</table>

Length

<table>
<thead>
<tr>
<th>Location</th>
<th>Value [mm or in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left (near -X side)</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td>Right (near +X side)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance from -Z face [mm (in)]</th>
<th>Thickness [mm or in]</th>
<th>Radius of Edge Fillets [mm or in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (0.5)</td>
<td>-X Side</td>
<td>-Y Side</td>
</tr>
<tr>
<td>25 (1)</td>
<td>+X Side</td>
<td>+Y Side</td>
</tr>
<tr>
<td>51 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356 (14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11-7: Tab inspection worksheet
12. CSD CONSTRAINED DEPLOYABLES

The payload may use the CSD to constrain deployables in designated areas as defined sections 3 and 4. At these designated contact zones the CSD interior surface shall be nominally 1.3mm [0.05 in] from the maximum allowable dynamic envelope of the payload defined as ‘Width’ and ‘Height’. Only the portion of the payload directly contacting the CSD Walls (bearing, etc.) may exceed the payload dynamic envelope.

Deployable Design Notes:
1) Ensure sufficient CSD contact spacing and panel stiffness to prevent the panel from rubbing on the dispenser as the payload ejects.
2) Deployables should have features to react shear loading at end opposite hinge. This prevents excessive loading on the hinge and deflection at the end of the deployable during launch.
3) The deployable panels shall be sufficiently preloaded against the payload structure to minimize rattling during launch. This can be accomplished by incorporating a leaf spring, spring plunger, etc.
4) Consider potential disturbance torques from the deployable adjacent the CSD door remaining in contact after the payload has ejected the CSD.
5) Account for tolerance build-up in the deployable preload system. By necessity, the dispenser width will be greater than the payload’s tab width. During payload installation there could be up to .5 mm [0.020 in] of play relative to nominal in the +X or –X positioning of the payload. Therefore the +X or –X contact walls of the dispenser may be 0.8 to 1.8 mm [0.03 to 0.07 in] from the payload’s nominal max dynamic envelope. These values are estimates. Refer to the dispenser manufacturer for specific values.

Figure 12-1: Deployable contact with CSD

Figure 12-2: Payload dispensing from CSD
13. PAYLOAD VOLUME

The allowable volume of the payloads is larger than existing CubeSats.

Figure 13-1: Comparison of 3U payload volumes. This specification allows 15% more volume.

Figure 13-2: Comparison of 6U payload volumes. This specification allows 9% more volume.
14. TYPICAL APPLICATIONS

The payload need not occupy the entire volume provided the tabs are present.

Figure 14-1: 6U payload example

Figure 14-2: POPACS, a multi-piece 3U payload

Figure 14-3: Encapsulating PocketQubs in a tabbed structure

Figure 14-4: 6U payload

Figure 14-5: 6 X 1U bus

Figure 14-6: Solar array potential
Figure 14-7 and Figure 14-8 below show sophisticated 6U spacecraft from several manufacturers. In 2016 these designs represent state of the art.

Figure 14-7: Pumpkin Inc.'s 6U SUPERNOVA bus

Figure 14-8: Blue Canyon Technologies' 6U payload bus

- Pointing: 2X star trackers
- Pointing Accuracy: 4 arc-sec, 1σ cross-boresight
- Solar Array: 100W peak power, BOL
- Battery: 8.4 A*Hr
- Reaction Wheels: momentum 100 mN*m*s, torque 7mN*m
- Comm: >5Mbits/s downlink
An existing CubeSat with 4 corner rails can easily comply with this specification by fastening on custom tabs.

Figure 14-9: 3U CubeSat tab conversion

3U CubeSat with bolt-on tabs fits within allowable payload volume.

Figure 14-10: 6U payload with non-continuous tabs (large middle gap requires a custom dispenser)
Figure 14-11: Lunar Water Distribution (LWADI), a 6U interplanetary spacecraft. Ref. 6.

Figure 14-12: Example of -Z face that contacts dispenser ejection plate.
Modular test payloads allow tuning of total mass, mass distribution, damping and stiffness. Bolt-on tabs can be easily replaced.

Figure 14-13: 6U modular test payload
15. SEPARATION ELECTRICAL CONNECTOR ATTACHMENT

The figures below show a typical means of mounting the separation electrical connector. It only need be mounted via the flat face that contains the two 4-40 UNC screws. Additional support around the side of the connector shell is unnecessary. An open cutout in the mounting bracket is beneficial as it allows the connector to be removed after the harness is wired.

![Figure 15-1: Separation electrical connector on payload](image1)

![Figure 15-2: Separation electrical connector mounting example](image2)

16. RECOMMENDED TEST AND INTEGRATION

Test levels are for launch environment, not necessarily on-orbit.

Payload (PL)

Canister (CSD)

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y, Z Random Vibe</td>
<td>Test IAW GSFC-STD-7000, NASA GEVS, Tables 2.4-3 and 2.4-4. Qualification: 3 min/axis Acceptance: 1 min/axis Configuration: integrated</td>
</tr>
</tbody>
</table>

Initiate Separation and Inspect Payload and CSD

- **Success**
- **Fail**

Integrate to Launch Vehicle and Operate CSD to Verify Initial Payload Separation

17. TIPS AND CONSIDERATIONS

1. **Electrical Wiring:** Include the electrical harness in the CAD model. Ensure there are sufficient routing options, strain relief and clearances. Also, the harness can consume a significant portion of the allowable payload mass.

2. **Installation in CSD:** The payload may end up being installed vertically in the CSD (gravity in –Z). Add a removable handle on the +Z face to aide installation.

3. **CSD Ejection:** When possible, verify complete ejection of the payload from the CSD during testing.

18. CAD MODELS

Solid models of the payloads at their maximum dynamic envelope are available for download at www.planetarysys.com. The payload may be inside a simplified model of the CSD. Reminder that PSC does not design or manufacture payloads, structures or buses.

19. ADDITIONAL INFORMATION

Verify this is the latest revision of the specification by visiting www.planetarysys.com.

Please contact info@planetarysystemsCorp.com with questions or comments. Feedback is welcome to realize the full potential of this technology.
20. REFERENCES

21. ACKNOWLEDGEMENTS

Dr. Andrew Kalman, Pumpkin Inc. Adam Reif, Pumpkin Inc.
Shaun Houlihan, Pumpkin Inc. Hans-Peter Dumm, AFRL
The late Steve Buckley, ORS Dr. Jeff Welsh, formerly ORS
Craig Kief, COSMIC Dr. Eric Swenson, AFIT
Philip Smith, AFIT Dr. Jordi Puig-Suari, Tyvak
Roland Coelho, Tyvak Dr. Robert Twiggs, Morehead State
Gil Moore, Project POPACS Rex Ridenoure, Ecliptic Enterprises
Tom Walkinshaw, Pocketcubeshop Jason Armstrong, ORS
Stephen Steg, Blue Canyon SpaceX

22. REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Release Date</th>
<th>Created By</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>25-Jul-2012</td>
<td>RH</td>
<td>WH</td>
</tr>
<tr>
<td>A</td>
<td>6-Aug-2013</td>
<td>RH</td>
<td>WH</td>
</tr>
<tr>
<td>B</td>
<td>21-Jul-2014</td>
<td>RH</td>
<td>WH</td>
</tr>
<tr>
<td>C</td>
<td>3-Aug-2015</td>
<td>HM</td>
<td>WH</td>
</tr>
<tr>
<td>D</td>
<td>4-Aug-2016</td>
<td>RH</td>
<td>WH</td>
</tr>
<tr>
<td>E</td>
<td>4-Aug-2017</td>
<td>RH</td>
<td>WH</td>
</tr>
</tbody>
</table>

Changes from previous revision:

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 3. Parameters | - D: Corrected mm tolerances
- M: Added note regarding maximum mass |
| 4. Common Requirements | - Removed ejection plate force
- Clarified anodize thickness build-up |
| 6. Dimensions | - Clarified note 2 regarding ejection plate contact
- Wrapped tab fillets around leading edge |
| 11. Tab Manufacturing | - Added bolt-on tab drawing |
| 13. Payload Volume | - Switched primary and secondary units |
| 14. Typical Applications | - Added modular test payload |